130 research outputs found

    An overview of the impact of additive manufacturing on supply chain, reshoring, and sustainability

    Get PDF
    The paper provides an overview of the impact of the integration of additive manufacturing (AM) within the supply chain, the correlation with the reshoring phenomenon, and its effect on environmental sustainability. Implementing AM technologies simplifies the traditional supply chain and significantly reduces costs related to transport and warehousing. Furthermore, it allows for a considerably reduced production of waste. However, the high price of machinery and the lack of current knowledge prevent it from spreading widely

    Computer Aided Morphological Analysis for maxillo-facial diagnostic: a preliminary study

    Get PDF
    This article compares most of the three-dimensional (3D) morphometric methods currently proposed by the technical literature to evaluate their morphological informative value, while applying them to a case study of five patients affected by the malocclusion pathology. The compared methods are: conventional cephalometric analysis (CCA), generalised Procrustes superimposition (GPS) with principal-components analysis (PCA), thin-plate spline analysis (TPS), multisectional spline (MS) and clearance vector mapping (CVM). The results show that MS provides more reliable and useful diagnostic informatio

    Effect of recycled powder and gear profile into the functionality of additive manufacturing polymer gears

    Get PDF
    Purpose Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism. Design/methodology/approach Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms. Findings Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism. Originality/value In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction

    Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing

    Get PDF
    Additive manufacturing (i.e., 3D printing) has rapidly developed in recent years. In the recent past, many researchers have highlighted the development of in-house filaments for fused filament fabrication (FFF), which can extend the corresponding field of application. Due to the limited mechanical properties and deficient functionality of printed polymer parts, there is a need to develop printable polymer composites that exhibit high performance. This study analyses the actual mechanical characteristics of parts fabricated with a low-cost printer from a carbon fibre-reinforced nylon filament. The results show that the obtained values differ considerably from the values presented in the datasheets of various filament suppliers. Moreover, the hardness and tensile strength are influenced by the building direction, the infill percentage, and the thermal stresses, whereas the resilience is affected only by the building direction. Furthermore, the relationship between the mechanical properties and the filling factor is not linear

    Additive Manufacturing of a Microbial Fuel Cell - A detailed study

    Get PDF
    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m−3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments

    Additive manufacturing redesigning of metallic parts for high precision machines

    Get PDF
    The conventional approach to design and manufacturing often has geometries with an efficient material distribution. For the high-precision machines, that approach involves the design of heavy components that guarantees the stiffness requirements. However, the higher the weight of the part, the higher inertia it has. As a result, when the feed axes are accelerated, the inertial forces deform the machine components and the precision of the machine is reduced. This study investigated the designing for additive manufacturing (DfAM) and designing for assembly (DfA) to increase the material efficiency of components for high-precision applications. A new methodology which considered the design and manufacturing issues and machining as well is given. A comprehensive model for cost evaluation of the part is presented. The case study refers to the rails and the bracket that support and move the flying probe of a testing machine for microelectromechanical systems (MEMS). The weight of the rails has been decreased by 32% and the components to be assembled have been reduced from 16 to 7. The optimized bracket is more than 50% stiffer than the original one, 10% lighter, and economically competitive

    Production of Dense Cu-10Sn Part by Laser Powder Bed Fusion with Low Surface Roughness and High Dimensional Accuracy

    Get PDF
    Tin-bronze alloys with a tin content of at least 10 wt% have excellent mechanical properties, wear resistance, and corrosion resistance. Among these alloys, Cu-10Sn was investigated in this study for production with the laser powder bed fusion process with a 500W Yb:YAG laser. In particular, a design of experiment (DoE) was developed in order to identify the optimal process parameters to obtain full density, low surface roughness, and high dimensional accuracy. Samples were characterized with Archimedes’ method and optical microscopy to determine their final density. It was shown that the first method is fast but not as reliable as the second one. A first mechanical characterization was performed through microhardness tests. Finally, a set of process parameters was identified to produce fully dense samples with low surface roughness and high accuracy. The results showed that the volumetric energy density could represent an approach that is too simplified, therefore limiting the direct correlation with the physical aspects of the process

    Redesigning a flexural joint for metal-based additive manufacturing

    Get PDF
    Traditional rigid mechanisms exhibit problems such as assembly difficulties, friction and lubrification. Flexure-based compliant mechanisms, instead, are monolithic and gain their mobility thanks to proper design and materialdeflection. Designing and producing a compliant mechanism accurately and conveniently iscrucial. Thanks to its capabilities, additive manufacturing (AM) approach can provide optimal design and production and open the way to new, unexploited performances. This study investigates the redesign of a traditional cantilevered pivot. The redesign considers the performance improvements by exploiting the advantages of the AM based on laser powder bed fusion (L-PBF). The maximum tensileand compressive loads of the redesigned joint were identified. The structure was optimised by considering the most critical geometricalparameters in terms of mechanical performance. The geometricalfactorscomply with the design rules for L-PBF process, to maximise the dimensional and surface accuracies.The new approach to the flexural joint design presented in this paper provided higher mobility if compared with the traditional approach. Therefore, this study makes a major contribution to research on the production of precision alignment mechanisms and scientific instruments

    Accuracy of down-facing surfaces in complex internal channels produced by laser powder bed fusion (L-PBF)

    Get PDF
    5noAdditive manufacturing (AM) technology has great potential in manufacturing complex internal channels for several applications such as satellite communication systems, electronics and gas turbine airfoils. These applications can have complex shape and make traditional finishing processes a challenge for additive parts. Therefore, it is desirable that the internal surfaces be as close as possible to the tolerance of the field of application. In this study, a complex component was designed and manufactured in AlSi10Mg alloy through laser powder bed fusion (L-PBF) process. Using the data from the 3D scans, internal surface roughness and deviations from the CAD model were calculated.openopenCalignano F.; Iuliano L.; Galati M.; Minetola P.; Marchiandi G.Calignano, F.; Iuliano, L.; Galati, M.; Minetola, P.; Marchiandi, G
    • …
    corecore